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Investigation of the electronic structure of solid density plasmas by x-ray scattering
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G. Faussurier,! C. Blancard,} P. Renaudin,} and O. L. Landen*
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We present an improved analytical expression for the x-ray dynamic structure factor from a dense
plasma which includes the effects of weakly bound electrons. This result can be applied to describe
scattering from low to moderate Z plasmas, and it covers the entire range of plasma conditions that
can be found in inertial confinement fusion experiments, from ideal to degenerate up to moderately
coupled systems. We use our theory to interpret x-ray scattering experiments from solid density
carbon plasma and to extract accurate measurements of electron temperature, electron density and
charge state. We use our experimental results to validate various equation-of-state models for carbon

plasmas.
I. INTRODUCTION

X-ray scattering of solid density plasmas has been re-
cently proven a successful technique for the character-
ization of low-Z warm and dense states of matter [1-
3]. In particular, it was shown that by extending the
theory of spectrally resolved Thomson scattering in the
hard x-ray regime, accurate measurements of the elec-
tron temperature, electron density and ionization state
can be obtained. In this respect, comparison of the ex-
perimental results with equation of state (EOS) models
has started revealing important insights on the micro-
scopic electronic state of solid density beryllium plasmas
{2]- In this paper, we present a generalization of the tech-
nique to higher Z materials, thus allowing the study of
basic plasma parameters and transport properties of a
vast range of plasma regimes, as the ones created in iner-
tial confinement fusion (ICF) experiments [4] and found
in the interior of stars and planets.

In the case of low-Z materials, the x-ray dynamic form
factor, which is the fundamental quantity describing the
scattering cross section, is considerably simplified since
it contains only two major contributions that arise from
scattering from free electrons and tightly bound elec-
trons. The first term is usually described within the
random phase approximation (RPA) [5, 6] and it refers
to photon scattering from density fluctuations of the free
electrons in the plasma. During the process, energy is ex-
changed from the photons to the electrons, and the scat-
tered photons are downshifted in energy by the Compton
effect. Coherent scattering from tightly bound electrons,
instead, is well separated in energy from the free electron
term and it arises from photons that elastically scatter
electrons, as energy transfer is not kinematically allowed
in their bound states. The x-ray scattering cross section

*Lawrence Livermore National Laboratory, University of Califor-
nia, P.O. Box 808, CA 94551

tUniversitdt Rostock, Fachbereich Physik, Universitatsplatz, 3, D-
18051, Rostock, Germany

{Département de Physique Théorique et Appliquée, CEA/DAM
Ile-de-France, BP12, 91680 Bruyéres-le-Chatel Cedex, France

can be thus obtained for solid density matter, accounting
for both ideal and quantum degenerate plasmas [1]. The
transition from ideal to degenerate states often encom-
passes weakly or strongly coupled states [7] which may
exhibit a modified response in the electron density fluc-
tuation dynamics. A discussion on such conditions and
their effect on the x-ray scattering form factor has been
presented by Gregori et al. [8].

X-ray scattering from moderate to high-Z materials
add another term to the total form factor: scattering
from weakly bound electrons. Since, for those electrons
Compton scattering is kinematically permitted, the inci-
dent x-ray photons have a finite probability to transfer a
portion of their energy to the electrons, resulting in the
appearance of a secondary feature in the spectrum of the
scattered radiation that overlaps to the free electron one.
Thus, the interplay of the scattering from all of these
terms: free, tightly bound and weakly bound electrons,
provides a unique method for a full characterization of
the electronic state of the dense plasma. The number of
valence (or delocalized) electrons can be directly inferred
from the experimental spectra, as well as electron tem-
perature and density, providing important EOS model
validation. We will further discuss this point using car-
bon as an example. By extracting carbon EOS data from
experimental x-ray scattering spectra from solid density
carbon plasmas, we will directly compare our results with
various ionization balance models.

II. THEORY

Following the discussion in Gregori et al. [1], we de-
scribe the scattering from a uniform plasma containing
N ions per unit volume. If Z4 is the nuclear charge of
the ion, the total number of electrons per unit volume
in the system, including free and bound ones, is Z4N.
Let us now assume we probe such a system with x-rays
of frequency wp such that hwe > Ejy, with E7 the ion-
ization energy of any bound electron, i.e., the incident
frequency must be large compared to any natural absorp-
tion frequency of the scattering atom, which allows us to
neglect photoabsorption. During the scattering process,



the incident photon transfers, on average, momentum hk
and energy hw = R2k? /2m, = hwy — hw; to the electron,
where w; is the frequency of the scattered radiation, and
in the non-relativistic limit (hw < hwo)

ar

sin (6/2), (1)
with Ao the probe wavelength and 8 the scattering an-
gle. We denote with Z; and Z, the number of kine-
matically free and core electrons, respectively. Clearly,
Zp = Zs + Z.. Here Z_ includes both tightly bound and
weakly bound electrons, as there is not a net distinction
between them, and for any given bound electron in the
outermost shells there is a finite probability of either elas-
tic or inelastic scattering. Since Z; represents electrons
which are not bound to any single atom, we will also refer
to it as the number of delocalized, or valence, electrons.
Following the approach of Chihara [9, 10] the scattering
cross section is described in terms of the dynamic struc-
ture factor of all the electrons in the plasma
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where or is the usual Thomson cross section and S(k,w)
is the total dynamic structure factor given by

Sk, w) = | Fr(k) + a(k) Sk, w) + 252, (k,w)
+2, / Beelkyw — ) S (ky ')’ (3)

As extensively discussed in Gregori et al. [1], the first
term in Eq. (3) accounts for the density correlations of
electrons that dynamically follow the ion motion. This
includes both the core electrons, represented by the ion
form factor fr(k), and the screening cloud of free (and
valence) electrons that surround the ion, represented by
g(k) [11]}. S;;(k,w) is the ion-ion density correlation func-
tion. The second term in Eq. (3) gives the contribution
in the scattering from the free electrons that do not fol-
low the ion motion. Here, S, (k,w) is the high frequency
part of the electron-electron correlation function [12] and
it reduces to the usual electron feature 13, 14] in the case
of an optical probe. Inelastic scattering by core electrons
is included in the last term of Eq. (3), which arises from
bound-free transitions to the continuum of core electrons
within an ion, S..(k,w), modulated by the self-motion of
the ions, represented by S,(k,w).

In Ref. [1], we have presented simplified expressions for
each term in Eq. (3) for low-Z materials. In those cases,
the bound-free contribution is small under most experi-
mental conditions and it can be neglected. However, in
the case of carbon, L-shell inelastic scattering needs to
be included. Differently from the approach followed in
Ref. [1], we propose a more comprehensive treatment of
the core electron term based on the impulse approxima-
tion (IA) [15, 16]. The IA assumes that the electron-
photon interaction occurs on a very short time-scale, so

the target electron always sees the same nuclear potential
just before and after the collision. Since only changes in
the kinetic energy needs to be considered, the electron
can be treafed as free and its final energy depends on
the projection of the electron’s initial] momentum on the
scattering vector k. Thus, the doppler broadening of the
scattered radiation is proportional to the initial momen-
tum distribution of the electron [17]. In the hydrogenic
approximation for the initial wavefunction and momen-
tum distribution of the electron, the IA profiles for K and
L-shells assume the form [18]
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with ap the Bohr radius and Z, = Z4 — 2y, ; the effective
nuclear charge seen by the electron in the quantum state
n,l. The screening constants z,; depend on the atomic
(or ionic) state of the atom and they can be calculated
from the prescription of Pauling and Sherman [19].

As discussed by Eisenberger and Platzman [15], the IA
is correct to the order of (Eg/E.)?, where Ep is the bind-
ing energy and E, is the Compton recoil. For our typical
experimental conditions, E. ~ 70 eV and the binding
energy of L-shell carbon electrons is Ep ~ 11-64 ¢V (de-
pending on the ionization state), thus errors introduced
by the IA can be significant. Even if K-shell contribution
is typically less important than the L-shell one, correc-
tions to the IA need to be accounted for K-shell electrons
as well. The main modification in the A appears as a
shift of the peak of feature from the free electron value,
an effect known as the Compton defect (see e.g., [20, 21]).
Since the TA assumes plane waves as the final state for the
electron, improvement in the model can be obtained by
using the first Born approximation and hydrogenic wave-
functions for both initial and final states [15, 22, 23], or
by a perturbation expansion of the final states [24, 25].
In our work we will follow the perturbative approach of
Holm and Ribberfors [25] which gives for the first order
asymmetric correction to the IA:
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with the corrected IA profiles given by Jy, (§) = J2 ,(§)+
J} ,(€). Even if such modified IA expressions already pro-
vide accurate profiles for the experimental conditions of
interest, further improvements to the IA can be obtained
if more realistic wavefunctions (such as Hartree-Fock) are
used instead of hydrogenic ones (see e.g., [20]). For L-
shell electrons and atoms in their neutral state, the er-
ror introduced by the hydrogenic wavefunctions is <10%
when compared to Hartree-Fock wavefunctions [26] for
our typical experimental conditions.

The total bound-free dynamic structure is thus written
as

r

Seelkrw) = 55z 3~ Tna(6), (11)
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with the sum running over all the bound electrons. The
normalization constant r; accounts for the possibility of
coherent scattering [27] and it is given by [28]

_ Ji1(k)
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where f,(k) are the partial form factors for each bound
electron [19] and 3, fn(k) = fr(k). The coefficient B
in eq. (11) is only important for very large momentum
transfer and it is given by the Breit-Dirac formula [28]

(13)

Profiles of the bound-free dynamic structure for a car-
bon plasma are given in Figure 1 for different ionization
states and typical experimental conditions. The carbon
is assumed to be in an amorphous state (foam) with den-
sity 0.72 g/cc. In the high frequency limit, the ion-ion
self structure is S;(k,w) ~ §(w), as ion dynamics remain
unresolved under our experimental conditions [1]. Since
bound-free transitions are not allowed if hiw < Epg, the
dynamic factor (11) has a cut-off at the ionization en-
ergy for L-shell electrons, as it is clearly shown in Figure
1. Similarly, for K-shell electrons, the cut-off marks the
K-shell binding energy.

In the case of very dense plasma, the potential distribu-
tion of a given ion is influenced not only by its own bound
electrons but also by the neighboring ions. The net ef-
fect is a lowering of the ionization potential (continuum
lowering). Such lowering depends on the total number of
ions that participate in the modification of the potential
around a test ion, which, in turn, is a function of the
screening distance of the Coulomb forces. Stewart and
Pyatt [29] have calculated the continuum lowering using
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FIG. 1: (color) Calculated bound-free dynamic structures,
Sce(k,w), for a carbon plasma with density 0.72 g/cc at 130°
scattering angle. The probe energy is Eyp = 4.75 keV. The
ionization energy is corrected for continuum lowering.

a finite-temperature Thomas-Fermi model which repro-
duces both the classical Debye screening for low density
plasmas and the ion-sphere correlation length for high
density coupled systems. In their model, the lowering of
the ionization potential is given by:

Zfe2
Qfls = (4meg) s’ .
with,
2
1/3 Z1/34
(e
A== 373 : (15)
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The mean radius per electron is d = (3/4mn.)'/?, and
Ap is the Debye length. Since our experimental condi-
tions are also relevant in the investigation of degener-
ate electron systems, the Debye length should be calcu-
lated as A\p = \/eokBTcs/n.(Z; + 1)e2 [1], where the
effective temperature Toy = (T2 + T7)'/2, with T, =
Tr/(1.3251 — 0.1779,/7;), Tr the Fermi temperature,
and 7, = d/ap. This corrected temperature is chosen
such that the temperature of an electron liquid obeying
classical statistics exactly gives the same correlation en-
ergy of a degenerate quantum fluid at T, = 0 obtained
from quantum Monte Carlo calculations [30]. This ap-
proach was shown to reproduce finite-temperature static
response of an electron fluid, valid for arbitrary degen-
eracy [30]. For typical experimental conditions, AEg
accounts for ~30-50% of the ionization energy, thus con-
tinuum lowering strongly shifts the L-shell edges of the
bound-free dynamic structure.
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FIG. 2: (color) Static structures obtained for a carbon plasma
with density 0.72 g/cc and T. = 20 eV. The probe radiation
is Eo = 4.75 keV and the scattering angle is 130°.

It is interesting to compare the total scattered power
by bound and free electrons in the elastic and inelastic
terms. By integrating in frequency Eq. (3) we obtain the
total static structure

S(k) = Si(k) + Sg(k) + Sc(k), (16)
where,
Si(k) = |fr(k) + a(k)*Sii(k), (17)
Se(k) = Z;52.(k), (18)
and,
eEq /R
Sc(k) = 2, See(k,w)dw. (19)
eEg/h

The static structures S;;(k) and S2, (k) can be easily ob-
tained through the prescription described in Ref. [1].
The total elastic component of the scattered x-ray radia-
tion is Sr(k) and it includes contribution from both free
and bound electrons. Inelastic scattering by free elec-
trons and bound electrons is given by the terms Sg(k)
and Sc(k), respectively. In Figure 2 we have plotted as
a function of the charge state the various static structure
for a carbon plasma, 0.72 g/cc, T. = 20 eV, probed with
x-rays of energy Fy = 4.75 keV at 130° scattering an-
gle. We see that for Z;<3, the amount of the scattered
radiation by bound-free transitions is quite large and it
must be considered for a correct evaluation of the experi-
mental profiles, if accurate measurements of the electron
density, electron temperature and charge state need to
be performed.
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FIG. 3: (color) Experimental x-ray scattering data from a
heated carbon foam (0.72 g/cc) and a cold carbon foam. The
probe radiation is the Ti He-a line at 4.75 keV, and the
scattered x-rays are collected at ~130° + 5° scattering angle.
Best fit parameters and corresponding spectra are also plot-
ted in the figure. For the high temperature foam, a = 0.17,

~ Tr =104 eV, and T = 0.2; while for the cold foam o = 0.13,

Tr=16¢€eV,and I' = 0.9.

III. EXPERIMENTAL RESULTS

We apply the technique discussed in the previous sec-
tion to a dense carbon plasma. We used the 30-kJ Omega
laser facility [31] to produce a homogeneous and isochor-
ically heated carbon plasma at solid density, and then
probed the plasma interior with the Ti He-a x-ray line
at 4.75 keV from a secondary laser produced plasma.
The details of the experimental technique have been ex-
tensively discussed by Glenzer et al. [2, 3] and we will
refer the reader to those papers for additional informa-
tion. Prior to laser heating, the carbon is in an amor-
phous (foam) state with density 0.72 g/cc. Since dur-
ing the heating time the plasma is not expanding (see
Ref. [3]), the initial carbon density sets the ion density
to n; = 3.6 x 1022 cm~3. The electron density is then
determined by the ionization state of the system. By
changing the number of driver beams on the foam, we
can vary the degree of carbon heating and consequently
its ionization state.

In Figure 3 we have plotted experimental profiles ob-
tained for two different cases: a strongly heated foam and
a cold one. The scattered radiation has been collected
at ~ 130° £ 5° scattering angle with a high efficiency
graphite Bragg crystal operated in mosaic focusing mode
[2, 3]. This geometry corresponds to a scattering pa-
rameter & = 1/kAp. < 1, where Ap, = /eokpTes/n.€>.
Thus the scattering is noncollective and the spectra of the
free electrons directly show the distribution function [1].
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FIG. 4: (color) Experimental x-ray scattering data from a
heated carbon foam (0.72 g/cc) and a cold carbon foam. The
probe radiation is the Ti He-« line at 4.75 keV, and the scat-
tered x-rays are collected at ~130° +5° scattering angle. Best
fit parameters and corresponding spectra are also plotted in
the top panel. The comparison between different ionization
state theoretical lineshapes with the data is zoomed in the
bottom panel. For these experimental conditions o = 0.21,
Tr=73eV,and T = 0.5.

From the figure we notice an increased red wing for the
higher temperature foam, indicating that a larger num-
ber of electrons have been downshifted in energy by the
Compton effect. Since these are essentially free electrons,
an increased red wing in the spectrum is thus a signature
of a higher ionization state. By combining the theory out-
lined in the previous section for the core electrons with
the approach described by Gregori et al. [1] based on the
RPA for the free electron density response, we can fit the
experimental data to obtain 7, and Z ¢. The electron
density is then simply given as n. = Zyn;, as heating is
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d 0.67 g/cc

0 SR TR AT ey e N Saha audoa e o abdhod o oo Bod o b ]
0 W 20 40 50 60 70
Te(eV)

FIG. 5: (color) Temperature-ionization diagram along with
the results of the x-ray scattering measurements and various
EOS models (see text).

isochoric and the plasma does not expand at the prob-
ing time. The high temperature foam gives Z; = 4.25
and T, = 53 eV, while for the cold foam Z; = 0.26 and
T. = 5 eV. As discussed by Glenzer et al. [2], the error in
the temperature measurement for the high temperature
foam is $20%. For the cold foam, instead, the electron
plasma is fully degenerate (T, ~ Tr) and the width of the
Compton feature is only weakly sensitive on the electron
temperature. Moreover, the Compton profile mainly re-
sults from bound-free transitions which directly reflects
the heavy ion temperature. Under these conditions, the
fitted temperature is understood only as an upper limit
of the actual electron temperature of the degenerate elec-
tron fluid. As a final remark, we notice that for our
experimental conditions, the electron-electron coupling
constant ' = e?/4mweokpT.;d<1, thus local field correc-
tions to the RPA are not important [8].

In Figure 4 it is plotted the x-ray scattering spectrum
from a moderately heated foam. The best fit values for
this case are Z;y = 2.5 and T, = 20 eV, and the cor-
responding theoretical form factor, convoluted with the
appropriate instrument function, is also reported in the
Figure. In order to test the sensitivity in the ionization
state measurement, we have plotted theoretical spectra
for two different values of Zy, all the other parameters
being the same. The Figure shows that a typical error in
the ionization state value is ~ £0.5.

Figure 5 shows the T,.-Z; phase diagram along with
experimental data and various EOS models for car-
bon. These are the activity expansion method (ACTEX)
[32, 33], the partially ionized plasma (PIP) model [34, 35]
and SCAALP, a density functional plasma model [36].
In the ACTEX theory, all possible interactions between



plasma constituents are calculated including the screen-
ing of the bound states. For large densities, the clas-
sical Debye-Hiickel (Yukawa) potential is replaced by a
screened potential which has a cut-off for distances that
approach the thermal de Broglie wavelength, in order to
mimic quantum mechanical effects (i.e., exchange and
symmetry). This approach allows the calculation of de-
localized electrons, i.e., the number of electrons that are
no longer bound to a single ion. These electrons are free
or weakly bound like the conduction electrons in a metal.
For our conditions, these electrons give rise to the Comp-
ton downshifted electron feature of the x-ray scattering
spectrum. The PIP model is based on the self-consistent
solution of Saha-like equations for each ionization stage
together with the calculation of appropriate chemical po-
tentials for electrons and ions. This also allows the inclu-
sion of high density effects by using corrected chemical
potentials for the continuum lowering. SCAALP is based
on the density functional theory for plasmas, where elec-
tronic structure and ionic distribution are determined
self-consistently. The plasma is considered as an effec-
tive classical system of virtual neutral particles (neutral
pseudo-atom, NPA) interacting via an interatomic effec-
tive potential Ves¢(r). Electrons of the NPA satisfy a
Schrodinger equation with an effective central symmet-
ric potential ¢(r). Both V.4 and ¢ are determined by
the electronic structure and the ionic distribution of the
plasma. Polarization and correlation effect of the contin-
uum electrons are taken into account, as well as a part
of the exchange interaction within V,yy.

Results from these models, assuming different values
for the carbon density, are plotted in Figure 5. The com-
parison with the experimental data shows good agree-
ment with SCAALP at all densities, even if some dif-
ferences still remain especially for the high temperature
case. The PIP model also gives reasonably good agree-
ment with the data at all densities, but it seems to
over-predict the ionization state in the mid-temperature
regime. In this regime the plasma undergoes a tran-
sition from a degenerate fluid to a classical one, thus
a full quantum mechanical treatment beyond the Saha
description may be required. ACTEX shows a similar
trend to SCAALP for the low density simulation, but, in
the higher density case, predicts a low temperature foam
which still have ~2 electrons in the conduction band.

6

This transition to a metallic state for carbon at high
density are not reproduced by the other models and our
experimental data at low T, also shows an insulating be-
havior for carbon at high density.

From this discussion, we see that currently available
EOS models for carbon exhibit different behavior in the
temperature range 0-50 eV, which span the range from
fully degenerate to classical plasmas. X-ray scattering
thus provides an accurate experimental tool for valida-
tion and improvement of EOS codes, as clearly shown in
Figure 5.

IV. CONCLUSIONS

In this paper we have given approximate expressions
to calculate the x-ray scattering form factor from weakly
bound electrons which are accurate for moderate to low-Z
materials. The approach that we have followed is based
on the TA corrected for the asymmetry induced by the
electron binding. Together with the RPA for the free elec-
tron dynamic structure, we were able to obtain a full de-
scription of the x-ray scattering form factor for a carbon
plasma. We have compared our model with experimen-
tal data from the Omega laser facility in order to extract
accurate values for electron temperature and ionization
state. This has allowed the comparison between various
ionization balance models for carbon with our data, thus
enabling a direct validation of EOS theories for a carbon
plasma in a regime which cover the transition between a
degenerate to classical fluid. Our result are of interest for
ICF research as well as planetary science since they in-
dicate that matter under extreme conditions, as the one
found in fuel pellet during compression or in the interior
of planets, can now be investigated with good accuracy.
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